Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Personalized Mechanical Ventilation: Improving Quality of Care ; : 223-246, 2022.
Article in English | Scopus | ID: covidwho-2321350

ABSTRACT

Ultrasound (US) became an essential tool in the hands of the intensivist and is now recommended both for procedural guidance and diagnostic purposes. Point-of-care ultrasound (POCUS) is an immediately available and repeatable, non-irradiating bedside tool integrating the clinical examination. Recent years were characterized by a growing interest in the fields of lung ultrasound (LUS) and diaphragm ultrasound (DUS). The combination of these two ultrasound techniques with critical care echocardiography (CCE) may integrate the classical approach to mechanically ventilated patients, both for monitoring and diagnostic purposes, finally contributing to the titration of mechanical ventilation and to the management of respiratory disease. Lung, diaphragm, and cardiac US provide significant information to improve the management of the critical patient under mechanical ventilation, from the initial assessment, through the ventilation setting (like PEEP) and its complication diagnosis (like pneumothorax, atelectasis), until the weaning process. LUS is of particular help in COVID-19 patients. It is potentially able to distinguish between the two phenotypes (type H and type L) of COVID-19, based on the different signs and patterns and also the assessment of prone positioning effects and lung recruitment maneuvers in these patients. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
Eur J Case Rep Intern Med ; 7(8): 001800, 2020.
Article in English | MEDLINE | ID: covidwho-2260730

ABSTRACT

Clinical experience and scientific articles have shown that patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be paucisymptomatic or asymptomatic at the time of diagnosis. In this paper, we will discuss two paucisymptomatic patients with blood tests suggestive for SARS-CoV-2 infection but with repeated negative nasopharyngeal swabs and without typical features of COVID-19 pneumonia on chest high-resolution computed tomography. In these cases, lung ultrasound helped to raise clinical suspicion of COVID-19 pneumonia and facilitate diagnosis. LEARNING POINTS: During the current COVID-19 pandemic, lung ultrasound (LUS) is being used extensively to evaluate and monitor lung damage in infected patients.Several patients have been described with negative PCR swabs who tested positive for SARS-CoV-2 in bronchoalveolar lavage fluid.Typical signs of interstitial pneumonia on LUS strongly indicate COVID-19 pneumonia, thus suggesting further investigation and invasive tests to confirm the diagnosis.

3.
2022 IEEE International Ultrasonics Symposium, IUS 2022 ; 2022-October, 2022.
Article in English | Scopus | ID: covidwho-2191976

ABSTRACT

Lung ultrasound has become one of the most promising medical techniques for the diagnosis and monitoring of pneumonia, which is one of the main complication of SARS-CoV-2 infection. Despite this, the lack of trained personnel in lung echography has restricted its use worldwide. Computer aided diagnosis could help reducing the learning curve for less experienced technicians and, therefore, extending the use of lung ultrasound more quickly, while reducing the exam duration. This work explores the feasibility of real-time image processing algorithms for automatic calculation of the lung score. A clinical trial with 30 patients was completed following the same protocol of acquiring saving 3 seconds videos of different thorax zones. Those videos were evaluated by an experienced physician and by a custom developed algorithm for detecting A-lines, B-lines, and consolidations. The concordance between both findings were 88% for B-lines, 93.4% for consolidations and 70.2% for A-lines, reducing the acquisition time using the ULTRACOV prototype [1] by more than half compared to a conventional scanner. The good agreement of the results proves the feasibility of implementing real-time algorithms for aided diagnosis in lung ultrasound equipment. © 2022 IEEE.

4.
Ann Palliat Med ; 11(12): 3794-3803, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2204827

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a very common disease in the intensive care unit (ICU), with rapid progression and high mortality. Infections caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily progress to ARDS in severely ill patients. Early and rapid diagnosis as well as screening for ARDS during treatment is very important. Owing to the particularity of patients with coronavirus disease 2019 (COVID-19), computed tomography (CT) examination is not always possible, and chest radiographs have a low sensitivity and specificity for the diagnosis of lung diseases. Therefore, bedside lung ultrasound (LUS) can be used as a new tool for the diagnosis of ARDS in patients with COVID-19. In the non-gravity-dependent pulmonary field, there are bilateral non-uniform B lines. In the dorsal pulmonary field, the B lines are denser and even appears as "white lung". Areas of consolidation are usually found in the dorsal pulmonary field, especially at the basilar part, with static or dynamic air bronchogram sign. In the fused B-line area, the "lung slip" usually decreases or disappears. The pleural line is irregular, thickened, and rough, with multiple small consolidations. The pulmonary ultrasound findings of primary and secondary ARDS were similar. CASE DESCRIPTION: In the abovementioned context, we share our experience with the treatment of one critical COVID-19 case and review the literature. An 81-year-old male patient with ARDS which is caused by COVID-19. The implementation of prone ventilation was guided by LUS, and we found that the pulmonary edema in the gravity-dependent area did improve over time. After 9 h of prone ventilation, the consolidation of the posterior area began to open. LUS shows the change from fragment sign to B line. After 16 h, the B-line was educed, indicating that pulmonary edema was improving. The oxygenation could be improved. Pulmonary ultrasound makes the monitoring of prone ventilation visualized. As the same time, the patient was accepted high-flow nasal oxygen, mechanical ventilation and treated with oseltamivir, lopinavir/ritonavir, abidol and cefoperazone-sulbactam. CONCLUSIONS: LUS-guided treatment was the key factor in the successful treatment of this case.


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Male , Humans , Aged, 80 and over , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/therapy , SARS-CoV-2 , Critical Illness , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Lung/diagnostic imaging , Ultrasonography, Interventional
5.
J Intensive Care Med ; 37(12): 1614-1624, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2098205

ABSTRACT

Introduction: The appraisal of disease severity and prediction of adverse outcomes using risk stratification tools at early disease stages is crucial to diminish mortality from coronavirus disease 2019 (COVID-19). While lung ultrasound (LUS) as an imaging technique for the diagnosis of lung diseases has recently gained a leading position, data demonstrating that it can predict adverse outcomes related to COVID-19 is scarce. The main aim of this study is therefore to assess the clinical significance of bedside LUS in COVID-19 patients who presented to the emergency department (ED). Methods: Patients with a confirmed diagnosis of SARS-CoV-2 pneumonia admitted to the ED of our hospital between March 2021 and May 2021 and who underwent a 12-zone LUS and a lung computed tomography scan were included prospectively. Logistic regression and Cox proportional hazard models were used to predict adverse events, which was our primary outcome. The secondary outcome was to discover the association of LUS score and computed tomography severity score (CT-SS) with the composite endpoints. Results: We assessed 234 patients [median age 59.0 (46.8-68.0) years; 59.4% M), including 38 (16.2%) in-hospital deaths for any cause related to COVID-19. Higher LUS score and CT-SS was found to be associated with ICU admission, intubation, and mortality. The LUS score predicted mortality risk within each stratum of NEWS. Pairwise analysis demonstrated that after adjusting a base prediction model with LUS score, significantly higher accuracy was observed in predicting both ICU admission (DBA -0.067, P = .011) and in-hospital mortality (DBA -0.086, P = .017). Conclusion: Lung ultrasound can be a practical prediction tool during the course of COVID-19 and can quantify pulmonary involvement in ED settings. It is a powerful predictor of ICU admission, intubation, and mortality and can be used as an alternative for chest computed tomography while monitoring COVID-19-related adverse outcomes.


Subject(s)
COVID-19 , Humans , Middle Aged , COVID-19/complications , COVID-19/diagnostic imaging , SARS-CoV-2 , Point-of-Care Systems , Lung/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed
6.
J Clin Med ; 11(19)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2066177

ABSTRACT

Childhood pulmonary tuberculosis (PTB) diagnosis is often a challenge that requires a combination of history, clinical, radiological, immunological and microbiological findings. Radiological diagnosis is based today on the use of chest X-ray and chest CT that, in addition to being radio-invasive tools for children, are often not available in countries with low-resources. A non-invasive, easily usable and reproducible, low-cost diagnostic tool as LUS would therefore be useful to use to support the diagnosis of childhood PTB. Data on the use of LUS for the diagnosis and follow-up of childhood PTB are limited and in some respects contradictory. To help better define the potential role of LUS we have described the pros and cons of lung ultrasound method through a brief review of the studies in the literature and reporting some case series in which we describe clinical, laboratory, radiological results as well as detailed lung ultrasound findings of four children/adolescents with PTB.

7.
2nd International Conference on Pervasive Computing and Social Networking, ICPCSN 2022 ; 475:389-405, 2023.
Article in English | Scopus | ID: covidwho-2048175

ABSTRACT

The intelligent machine assisted diagnostics for the reliable and rapid identification of coronavirus disease (COVID-19) has become a most demanded approach to prevent the novel coronavirus spread during the pandemic and to relieve the strain on the healthcare system. The need for speedy diagnosis necessitates deep learning approaches for predicting the patient's health, and disease severity assessment using Lung Ultrasound (LUS) is the secure, radiation-free, adaptable, and advantageous choice in prediction and detection of novel coronavirus. The suggested model is the convolutional neural network deep layers integrated with recurrent neural networks autoencoder block used to indicate disease intensity ranges from lung ultrasound (LUS) images. The evaluation metric for the proposed model used is the fivefold cross-validation approach. Experimental results for novel proposed model depict through confusion matrix and accuracy-validation curve compared between the traditional convolutional neural network model and united training model consisting of convolutional neural network and long short-term memory (LSTM) based convex probe and linear probe evident that accuracy rate has increased in predicting the intensity levels than the former model. The memory unit incorporated in the training model enables to store, modify, update the temporal features including both of training data and testing data. Convolutional Neural Network (CNN) incorporates an autoencoder block to provide a robust, noise-free classification model in predicting intensity levels. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

8.
Cureus ; 14(3): e23375, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1791865

ABSTRACT

Background Point-of-care ultrasound (POCUS) is an indispensable tool in emergency medicine. With the emergence of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a need for improved diagnostic capabilities and prognostic indicators for patients who are symptomatic for COVID-19 has become apparent. POCUS has been demonstrated to be a useful diagnostic and prognostic tool in the emergency department (ED) in assessing other lung complications. Still, limited data regarding its utility in assessing COVID-19 are available. This study sought to evaluate whether POCUS findings in the ED were correlated with vital signs or laboratory abnormalities typically seen among patients with COVID-19. Methods A retrospective study was conducted that included 39 patients who presented with COVID-19 and systemic inflammatory response syndrome (SIRS) to a large, urban tertiary care ED. The study population was limited to adults aged 18 and above who came to the ED with the primary complaint of respiratory symptoms, met SIRS criteria on admission, and had images of at least one anterior and one posterior intercostal space per lung and a minimum of four intercostal spaces. POCUS images were obtained by trained operators in the ED using portable ultrasound machines, recorded in an image database, and reviewed by ultrasound fellowship-trained emergency physicians. Clinical data (e.g., acute phase reactants and vital signs) were obtained through a chart review of patients' electronic medical records. Results  Both the percentage of intercostal spaces with B-lines and the percentage of merging B-lines were correlated with decreased oxygen saturation on presentation. No other statistically significant correlations were observed between these sonographic findings and other vital signs or acute phase reactants, nor between these clinical data and the percentage of intercostal spaces that were positive for the shred sign. Conclusions With the emergence of the COVID-19 pandemic, emergency medicine physicians are on the frontline of identifying and caring for patients affected by the virus. This study found that sonographic findings associated with interstitial pneumonitis, notably merging B-lines, and the overall percentage of intercostal spaces with B-lines, were clearly associated with worsening oxygen saturation, now thought to be one of the driving causes of morbidity and mortality in COVID-19. As ultrasound has become a ubiquitous and indispensable tool in the ED, this study demonstrated its utility in assessing and managing patients with COVID-19. Bedside ultrasound is a cheap, fast, and non-invasive tool that healthcare providers can use as an essential adjunct in addition to laboratory markers and other imaging modalities for the diagnosis and prognosis of COVID-19.

9.
Front Med (Lausanne) ; 8: 815732, 2021.
Article in English | MEDLINE | ID: covidwho-1662595

ABSTRACT

Background: Interstitial lung sequelae are increasingly being reported in survivors of COVID-19 pneumonia. An early detection of these lesions may help prevent the development of irreversible lung fibrosis. Lung ultrasound (LUS) has shown high diagnostic accuracy in interstitial lung disease (ILD) and could likely be used as a first-line test for post-COVID-19 lung sequelae. Methods: Single-center observational prospective study. Follow-up assessments of consecutive patients hospitalized for COVID-19 pneumonia were conducted 2-5 months after the hospitalization. All patients underwent pulmonary function tests (PFTs), high-resolution computed tomography (HRCT), and LUS. Radiological alterations in HRCT were quantified using the Warrick score. The LUS score was obtained by evaluating the presence of pathological B-lines in 12 thoracic areas (range, 0-12). The correlation between the LUS and Warrick scores was analyzed. Results: Three hundred and fifty-two patients who recovered from COVID-19 pneumonia were recruited between July and September 2020. At follow-up, dyspnea was the most frequent symptom (69.3%). FVC and DLCO alterations were present in 79 (22.4%) and 234 (66.5%) patients, respectively. HRCT showed relevant interstitial lung sequelae (RILS) in 154 (43.8%) patients (Warrick score ≥ 7). The LUS score was strongly correlated with the HRCT Warrick score (r = 0.77) and showed a moderate inverse correlation with DLCO (r = -0.55). The ROC curve analysis revealed that a LUS score ≥ 3 indicated an excellent ability to discriminate patients with RILS (sensitivity, 94.2%; specificity, 81.8%; negative predictive value, 94.7%). Conclusions: LUS could be implemented as a first-line procedure in the evaluation of Post-COVID-19 interstitial lung sequelae. A normal LUS examination rules out the presence of these sequelae in COVID-19 survivors, avoiding the need for additional diagnostic tests such as HRCT.

10.
2021 IEEE International Ultrasonics Symposium, IUS 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1642565

ABSTRACT

Lung ultrasound (LUS) imaging is playing an important role in the current pandemic, allowing the evaluation of patients affected by COVID-19 pneumonia. However, LUS is limited to the visual inspection of ultrasound data, which negatively affects the reproducibility and reliability of the findings. For these reasons, we were the first to propose a standardized imaging protocol and a scoring system, from which we developed the first artificial intelligence (AI) models able to evaluate LUS videos. Furthermore, we demonstrated the prognostic value of our approach and its utility for patients' stratification. In this study, we report on the level of agreement between the AI and LUS clinical experts (MD) when evaluating LUS data. Specifically, in the stratification between patients at high risk of clinical worsening and patients at low risk, the agreement between MDs and AI reached 82%. These encouraging results open to the possibility of exploiting AI for fast and accurate stratification of COVID-19 patients. © 2021 IEEE.

11.
Applied Sciences ; 11(24):11697, 2021.
Article in English | ProQuest Central | ID: covidwho-1594752

ABSTRACT

The presence of B-line artefacts, the main artefact reflecting lung abnormalities in dengue patients, is often assessed using lung ultrasound (LUS) imaging. Inspired by human visual attention that enables us to process videos efficiently by paying attention to where and when it is required, we propose a spatiotemporal attention mechanism for B-line detection in LUS videos. The spatial attention allows the model to focus on the most task relevant parts of the image by learning a saliency map. The temporal attention generates an attention score for each attended frame to identify the most relevant frames from an input video. Our model not only identifies videos where B-lines show, but also localizes, within those videos, B-line related features both spatially and temporally, despite being trained in a weakly-supervised manner. We evaluate our approach on a LUS video dataset collected from severe dengue patients in a resource-limited hospital, assessing the B-line detection rate and the model’s ability to localize discriminative B-line regions spatially and B-line frames temporally. Experimental results demonstrate the efficacy of our approach for classifying B-line videos with an F1 score of up to 83.2% and localizing the most salient B-line regions both spatially and temporally with a correlation coefficient of 0.67 and an IoU of 69.7%, respectively.

12.
Ann Palliat Med ; 10(7): 8147-8154, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1339773

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) was outbreaking in late 2019 and a proportion of patients developed to pneumonia. Although chest CT is a pivotal diagnostic tool for COVID-19 pneumonia, CT is expensive and also radiological burden for patients. There is urgent to investigate the role of lung ultrasound (LUS) in diagnosing and monitoring COVID-19 pneumonia. METHODS: A total of 8 patients with confirmed cases of COVID-19 pneumonia in Shantou Central Hospital from January 2020 to February 2020 were retrospectively studied. All participants underwent chest HRCT and LUS examination; both were independently performed within 1 day of the other. The radiological patterns were reviewed by 2 radiologists who were blind to the clinical information. A senior ultrasound physician, blind to HRCT results and clinical data, performed bedside LUS in the isolation ward. The CT score was used (a semi-quantitative scoring system) to assess radiographic severity and extent. A B-lines score denoting the extent and severity of sonographic lesion was calculated by summing the number of B-lines on 18 scanning sites. RESULTS: B-lines (100%), pleural irregularities (25%), consolidation (25%), and pleural effusion (25%) were the main findings of LUS examination. Interstitial abnormalities, ground-glass opacities (GGO), consolidations and local or bilateral patchy shadowing were the main findings of HRCT examination. The findings of LUS and HRCT were compared point to point and high consistency was found between the 2 measurements. A significant correlation was also found between the B-lines score and CT score [r=0.96, 95% confidence interval (CI): 0.81 to 0.99, P=0.0001]. CONCLUSIONS: Both LUS patterns and B-lines score are significantly correlated with HRCT findings and score, respectively, supporting its role in assessing COVID-19 pneumonia severity, screening, and following up dynamic changes of pneumonia.


Subject(s)
COVID-19 , Pneumonia , Humans , Lung/diagnostic imaging , Pneumonia/diagnostic imaging , Retrospective Studies , SARS-CoV-2
13.
J Clin Med ; 10(14)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1323275

ABSTRACT

There is growing evidence regarding the imaging findings of coronavirus disease 2019 (COVID-19) in lung ultrasounds, however, their role in predicting the prognosis has yet to be explored. Our objective was to assess the usefulness of lung ultrasound in the short-term follow-up (1 and 3 months) of patients with SARS-CoV-2 pneumonia, and to describe the progression of the most relevant lung ultrasound findings. We conducted a prospective, longitudinal and observational study performed in patients with confirmed COVID-19 who underwent a lung ultrasound examination during hospitalization and repeated it 1 and 3 months after hospital discharge. A total of 96 patients were enrolled. In the initial ultrasound, bilateral involvement was present in 100% of the patients with mild, moderate or severe ARDS. The most affected lung area was the posteroinferior (93.8%) followed by the lateral (88.7%). Subpleural consolidations were present in 68% of the patients and consolidations larger than 1 cm in 24%. One month after the initial study, only 20.8% had complete resolution on lung ultrasound. This percentage rose to 68.7% at 3 months. Residual lesions were observed in a significant percentage of patients who recovered from moderate or severe ARDS (32.4% and 61.5%, respectively). In conclusion, lung injury associated with COVID-19 might take time to resolve. The findings in this report support the use of lung ultrasound in the short-term follow-up of patients recovered from COVID-19, as a radiation-sparing, easy to use, novel care path worth exploring.

14.
Cureus ; 13(6): e15640, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1296193

ABSTRACT

Reports of children with a temporal association to severe acute respiratory syndrome coronavirus-2 hospitalized with cardiogenic shock or Kawasaki-like disease began emerging in April 2020. In May 2020, the Centers for Disease Control and Prevention published the criteria for what came to be known as multisystem inflammatory syndrome in children, a postinfectious inflammatory immune response to coronavirus disease 2019 exposure. Hemophagocytic lymphohistiocytosis is a heterogeneous disease state associated with systemic hyperinflammation secondary to immune dysregulation. We describe the utility of perioperative lung ultrasound in an infant with both disease states.

15.
Praxis (Bern 1994) ; 110(8): 439-448, 2021 Jun.
Article in German | MEDLINE | ID: covidwho-1263464

ABSTRACT

POCUS - Thoracic Sonography in Times of Corona: What Sonographing Family Physicians Should Examine Abstract. When performing chest sonography of patients with symptoms such as respiratory infection, dyspnea and chest pain, the primary goal is to find or exclude significant diagnoses such as pneumothorax, pleural effusion, pulmonary edema, tumors, pulmonary emboli, etc. as the cause of the symptoms. If infection with SARS-CoV-2 is present, COVID-19 pneumonia can be confirmed or excluded as the cause of the symptoms with a high degree of probability based on the sonographic signs. COVID-19 pneumonia shows typical changes in the lungs, which are easily accessible to ultrasound due to their usually peripheral location. These are ubiquitous signs, such as a thickened, fragmented pleura with subpleural consolidations, multiple comet tail artifacts of varying size and thickness, some of which are coascent, broad bright light beams, and possibly small encapsulated pleural effusions. The more of these sonographic signs are present and the more pronounced they are, the sooner the patient must be hospitalized and possibly intubated. Ultrasound is also useful as a follow-up tool, together with clinical and laboratory findings.


Subject(s)
COVID-19 , Physicians, Family , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography
16.
Int J Environ Res Public Health ; 18(5)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1134158

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection is a major health threat. Pregnancy can lead to an increased susceptibility to viral infections. Although chest computed tomography (CT) represents the gold standard for the diagnosis of SARS-CoV-2 pneumonia, lung ultrasound (LUS) could be a valid alternative in pregnancy. The objectives of this prospective study were to assess the role of LUS in the diagnosis of lung involvement and in helping the physicians in the management of affected patients. Thirty pregnant women with SARS-CoV-2 infection were admitted at the obstetrical ward of our Hospital. Mean age was 31.2 years, mean gestational age 33.8 weeks. Several LUS were performed during hospitalization. The management of the patients was decided according to the LUS score and the clinical conditions. Mean gestational age at delivery was at 37.7 weeks, preterm birth was induced in 20% of cases for a worsening of the clinical conditions. No neonatal complications occurred. In 9 cases with a high LUS score, a chest CT was performed after delivery. CT confirmed the results of LUS, showing a significant positive correlation between the two techniques. LUS seems a safe alternative to CT in pregnancy and may help in the management of these patients.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Adult , Female , Humans , Infant, Newborn , Lung/diagnostic imaging , Pregnancy , Pregnant Women , Prospective Studies , SARS-CoV-2
17.
Medicina (Kaunas) ; 57(3)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1124744

ABSTRACT

Background and Objectives: The potential role of lung ultrasound (LUS) in characterizing lung involvement in Coronavirus disease 2019 (COVID-19) is still debated. The aim of the study was to estimate sensitivity of admission LUS for the detection of SARS-CoV-2 lung involvement using Chest-CT (Computed Tomography) as reference standard in order to assess LUS usefulness in ruling out COVID-19 pneumonia in the Emergency Department (ED). Methods: Eighty-two patients with confirmed COVID-19 and signs of lung involvement on Chest-CT were consecutively admitted to our hospital and recruited in the study. Chest-CT and LUS examination were concurrently performed within the first 6-12h from admission. Sensitivity of LUS was calculated using CT findings as a reference standard. Results: Global LUS sensitivity in detecting COVID-19 pulmonary lesions was 52%. LUS sensitivity ranged from 8% in case of focal and sporadic ground-glass opacities (mild disease), to 52% for a crazy-paving pattern (moderate disease) and up to 100% in case of extensive subpleural consolidations (severe disease), although LUS was not always able to detect all the consolidations assessed at Chest-CT. LUS sensitivity was higher in detecting a typical Chest-CT pattern (60%) and abnormalities showing a middle-lower zone predominance (79%). Conclusions: As admission LUS may result falsely negative in most cases, it should not be considered as a reliable imaging tool in ruling out COVID-19 pneumonia in patients presenting in ED. It may at least represent an expanded clinical evaluation that needs integration with other diagnostic tests (e.g., nasopharyngeal swab, Chest-CT).


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed , Ultrasonography , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Female , Hospitalization , Humans , Male , Middle Aged , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
18.
Crit Care ; 24(1): 702, 2020 12 24.
Article in English | MEDLINE | ID: covidwho-992527

ABSTRACT

COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.


Subject(s)
COVID-19/diagnostic imaging , Consensus , Echocardiography/standards , Expert Testimony/standards , Internationality , Point-of-Care Systems/standards , COVID-19/therapy , Echocardiography/methods , Expert Testimony/methods , Humans , Lung/diagnostic imaging , Thromboembolism/diagnostic imaging , Thromboembolism/therapy , Triage/methods , Triage/standards , Ultrasonography/standards
SELECTION OF CITATIONS
SEARCH DETAIL